Larrabee New Instructions

An nitial
encounter

Sverre Jarp

CERN openlab Minor Review Meeting — 16 June 2009

\»
h‘*'-

sty
CERN

openilab

Disclaimer

= This is a small digest of what Is
publicly available on the Web

= In particular:

“A First Look at the LRBni” by Michael Abrash,
Dr. Dobb’s Journal (Apr 01, 2009)

O BUt,

The presentation is principally limited to the
Instruction set

\»
h‘*'-

sty
CERN

openilab

Today’s agenda

= What Is Larrabee, anyway ?

= Architecture
Chip, Processor, Vector

= |nstruction overview
Vector load, store
Vector masks
Vector arithmetic, logical, shift
Others

= A simple code snippet

h‘*'-

crn \What is Larrabee?

= It is an architecture
Actually, it is a “RISC-like” architectural extension of x86

= Implementation:
Per core:
« Multiple threads (currently 4)
= Vector unit with lots of new instructions
= In-order execution
Many cores
= Interconnected via a coherent bus (or “ring”)

s “The architecture will first be used in GPUSs,
and could be used in CPUs as well”

\»
ﬁ‘*'-

'."’
CERN

openilab

Sverre’s 7 dimensions

Pipelining

s Several are rather
different In

Larrabee Superscalar

Compared to Xeon:
= Superscalar (-)

SIMD width

——) Multithreading

« SIMD width (++)
= Multithreading (+) Sockets
= Multicore (++)

Multicore

Nodes

Schematic chip overview

= Conceptually, it looks like this:

In Order, 4 In Order, 4
threads, SIMD-16 threads, SIMD-16

1$ D$ I$ D$

Memory Controller
Memory Controller

In Order, 4 In Order, 4
threads, SIMD-16 threads, SIMD-16

1$ D$ 1S D$

Sverre Jarp — LRBni — June 09

Processor diagram

s Scalar and vector
units are separate H
Communication via

registers (and flags) Scalar Vector
Unit Unit
= L1-cache
32 KB each
= L2-cache

256 KB each subset

Sverre Jarp — LRBni — June 09

A
™ *:-

S*s
CERN

openilab

Vector-related registers

= 32 vector registers with 512 bits
vO — v31l

s Each can hold:
16 floats, 16 Iint32s, 8 doubles, 8 int64s, etc.

Bit 511 Bit O

= 8 mask registers with 16 bits
kO — k7

Sverre Jarp — LRBni — June 09

\»
h‘*'-

sty
CERN

openilab

Instruction classes

= SIX major groupings:
1 Vector arithmetic, logical and shift
2) Vector compare
3 Vector mask
s Vector load/store
55 Misc. vector
sy Misc. scalar

s Convention for mnemonics:

vxxxpt (vector /nstruction packed type)
kxxx (mask /nstruction)

\»
ﬁ‘*'-

sty
CERN

openilab

Standard instruction format

= Typically “vop v1{kl}, v2, (v3/src) “
Ternary (3 sources)
Target same as first source
Third source (but only this one):
= Also addresses memory, as in: [rbx + rcx*4]
Mask register:
= Predicates updates of target
« Maintains “state”

\
ﬁ‘*:-

sty
CERN

openilab

Data element types

= Quick overview:

32 dword int32 uint32 single
{disu}

64 qword double

So, an instruction may operate on all or only
on some types:

= vVminp{disu}
n VS“pl

\»
h‘*'-

sty
CERN

openilab

Arithmetic, Logical and Shift

= Summarized In the backup section

= Normal collection of
Logical (and, or, xor, not, etc.)
Shift (Shift left logical, shift right arithmetic, etc.)
Lots of convert variants
Add, subtract, multiply
Min, max
Scale, round, etc.

= Some more exotic ones

Vsllpi (shift 132 vector left logical)

= Vslipi vl, v2, v3
Shift each 132 element in v2 left logical according to values in v3.
Store in v1

vz [s]ufs]efufw]s]e]z]s[r]ofs]e]s]4]

<<

V3:

211|o0f3(0]J]0]|3]2|12|(0}|311]0]2]|1{|0O0
vi: [=]=]ss]es]u]wfw]ze] 4] s [so[1s]aa]se] 0] 4]

Sverre Jarp — LRBni — June 09

\»
ﬁ‘*'-

sty
CERN

openilab

Standard Math Instructions

= 24 fused multiply-add/subtract
Instructions of the format:

“vm ff nnn p t”’ < White space for readability

« fff (function): add, addn (negate), sub, subr
(reverse)

= NNn (sequence of operands): 132, 213, 231
« t: {ds}

s For instance:
vmadd231ps

V2:

V3:

vl1:

vl1:

Multiply Add (231ps)

= vmadd231lps vl, v2, v3
Multiply 32 v2 and f32 v3, add the result to f32 v1.

25|2.6|3.0|E12|E11|(E1O(E9 | E8 | E7 | E6 | ES | E4 | E3 | E2 | E1 | EO

|| +

Sverre Jarp — LRBni — June 09

\»
ﬁ‘*'-

sty
CERN

openilab

Fused multiply-Add

= Combines one multiplication and one

addition
Without any loss of accuracy

s Good for cases like:
X3* A+ X2*B+X*C+D =
X*(X*(X*A+B)+C)+D

\
ﬁ‘ :-

cern \/ector compare instructions

openilab

= Syntax:
“vempp{disu} k2{k1}, vi, v2, cc”
CC:
= €(, Neq
= It, nit
= le, nle
= ord, unord

= Results are always stored In a mask
register

Mask Instructions

kand

Bitwise logical-and
kandn

Bitwise logical-and-not
kandnr

And-not reverse
knot

Bitwise logical-not
kor

Bitwise logical-or
kxnor

Bitwise logical-xnor
kxor

Bitwise logical-xor

Sverre Jarp — LRB#

kortest

Set ZF if OR results in all ‘O’,
CFif all ‘1’

kmov

Move vector masks
kmovlhb

Move low to high byte
kswapb

Swap and merge high byte
portion

(ai)
a
)]
O
(o)

Vector Load/Store instructions

vgatherd & “d” for “dwor

d”, not “double”

Gather vector (32-bit elements)
vgatherpfd

Prefetch vector (in gather form)
vioad{dq}

Load vector
vexpand{dq}

Load unaligned and expand to vector
vcompress{dq}

Compress and store unaligned from vector

vscatterd
Scatter vector

vscatterpfd
Prefetch vector (in scatter from)
vstore{dq}

Store vector

\
“‘ :-

cryl TWO common data scenarios

openilab

x Work with SOASs

Structures of Arrays or simply Arrays

» Work with AOSs

Arrays of Structures

Sverre Jarp — LRBni — June 09

\»
h‘*'-

14-’
CERN

openilab

Structures Of Arrays

= Typical sequence:
Load all data

= Vloadd or vexpandd
Work

Perform tests

Mask out irrelevant elements
More work

Store modified elements
= Vstored or vcompressd

= Masking (predication) ensures algorithmic
optimization, possibly also vexpand

\»
h‘*'-

14-’
CERN

openilab

Arrays of Structures

= Typical sequence:
Gather all data (vgatherd)
Work
Perform tests

Mask out Irrelevant elements
More work

Store modified elements (vscatterd)

= Gather and masking (predication) should
ensure even better algorithmic optimization

\»
ﬁ‘*'-

;4-’
CERN

openilab

Simple example (Checksumming)

s From Dr. Dobbs:

vO accumulates the results
v2 keeps addressing offsets

vxorpl v0, vO, VvO
ChecksumLoop:
vgatherd v1{kO}, [rbx + v2]
vaddpi vO, vO, vl
vaddpi v2,v2, [Mem Structure_Sizes]
dec rcx
jnz ChecksumLoop

\»
h‘*'-

14-’
CERN

openilab

Simple example (Navigation)

= Physics example:
Is the particle inside a box or not?

1T (abs(point[0] - origin[0]) > xhalfsz) return FALSE;
1T (abs(point[1l] - origin[l]) > yhalfsz) return FALSE;
1T (abs(point[2] - origin[2]) > zhalfsz) return FALSE;
return true;

= Can now be handled inside one

vector register

This will also be true for AVX
= Next year’s extension to Xeon

Andrzej’s usage comparisons

= Do you want (computing) power, flexibility, or ease of use?

ASM Intrinsics Autovectorization High level

S N 2 S D o S Q2 S D o
S X & S X & S X & S X &
< X O < £ O < X O < £ O
2 o < o 2 o X2
< o < o < o < o
& & & &

\»
h‘*'-

sty
CERN

openilab

Conclusions

= Larrabee exploits Moore’s law In

several dimensions:

Long vectors

= Coupled with sophisticated instruction set
Four threads
Large (double-digit) core count

= Consequently, applications need to

eXpPoOose.
Data parallelism
Task parallelism

\»
ﬁ‘*'-

sty
CERN

openilab

Further reading

= On the Web:

“A First Look at the LRBniI” by Michael Abrash, Dr.
Dobb’s Journal (Apr 01, 2009)

» http://www.ddj.com/architect/216402188

“Larrabee: A Many-Core x86 Architecture for Visual

Computing” by L.Seller et al (Siggraph, Aug. 2008)
» http://software.intel.com/file/18198/

Collection of articles from Intel, including:

“Game Physics Performance on the Larrabee
Architecture”, by A.Bader et al.

“Rasterization on Larrabee” by Michael Abrash
» http://software.intel.com/en-us/visual-computing/

BACKUP

Sverre Jarp — LRBni — June 09

Arithmetic, Logical and Shift (1)

vadcpi

Add vectors with carry (in and
out)

vaddnp{ds}

Add and negate vectors
vaddp{dis}

Add vectors

vaddsetcpi

Add vectors and set mask to
carry

vaddsetsp{is}
Add vectors and set mask to
sign

vandnp{iq}
Bitwise logical-and-not vectors

vandp{iq}
Bitwise logical-and vectors

vclampzp{is}

Clamp vector between value
and zero

vevtpd2p{isu}

Convert vector of double
vevtpi2p{ds}

Convert vector of int32
vevtps2p{diu}

Convert vector of double
vcvtps2srgb8

Convert single to sRGB8

vevtpu22p{ds}
Convert vector of uint32

Arithmetic, Logical and Shift (2)

= vmaxabsps

Absolute maximum of
singles

= vmaxp{disu}

Maximum
= vminp{disu}

Minimum
= vmulhp{iu}

Multiply and store high
= vmullpi

Multiply and store low
= vmulp{ds}

Multiply

vorp{iq}

Bitwise logical-or
vroundps

Round vector
vsbbpi

Subtract with borrow (in
and out)

vsbbrpi

Reverse subtract with
borrow (in and out)

vscaleps
Scale vector

Sverre Jarp — LRBni — June 09

Arithmetic, Logical and Shift (3)

= Vvsllpi = Vvsubrsetbpi

Shift left logical Reverse subtract and set
= vsrapi borrow

Shift right arithmetic
= vsrlpi = Vvsubsetbpi

Shift right logical Subtract and set borrow
= vsubp{dis} = vxorpiiq}

Subtract Bitwise logical-xor
= vsubrp{dis}

Reverse subtract

Sverre Jarp — LRBni — June 09

\'»
~~"-

“$
CERN

openlab

Special madd/msub cases

= vmadd231p{dis}
Variant with int32

= vmadd233p{is}

vl = (v2 * ExtractScaleElement(v3)) +
ExtractOffsetElement(v3)

= vmsubr23clp{ds}
vli=1.0-(v2 *v3)

